A key challenge in global change biology is to predict how ecosystems will respond to future environmental changes and to manage these responses. This is complicated by the fact that the biotic and physical components of the biosphere are interwoven by complex feedback relationships. In particular, ecosystem engineers are organisms that directly or indirectly modulate the suitability of the habitat and the availability of resources by causing changes in the physical state of the environment, including those environmental variables relevant for their own fitness. Variation in fitness affects the abundance and activity of engineers, thus their ability to modify the environment, thereby establishing amplifying or stabilizing biophysical feedback loops. This phenomenon is akin to a cybernetic system where adaptive management is employed to maintain desired outcomes. Human-induced feedback disruptions in such a cybernetic system can lead to instability or even collapse.
As a remarkable case of cybernetic loop, aquatic bioturbators, bioconstructors and bioirrigators are deemed ecosystem engineers because of the physical changes they cause to the benthic environment and to the water column. This has a strong impact on many important ecosystem features and processes which are all relevant for the fitness of engineers themselves on a larger scale, benthic ecosystems engineers are expected to influence and be influenced by the Earth system stoichiometry, seascape, landscape and climate. Global changes are currently having an impact on benthic ecosystem engineers and the biophysical feedback loops they are enmeshed in, which could trigger abrupt changes in aquatic and coastal ecosystems on a planetary scale.
Through the sharing of ideas and knowledge, FEC CYBER-COAST working groupwill develop a conceptual scheme to frame coastal environmental changes under the perspective of cybernetics and ecological energetics. The key partners include CNR-IRET Lecce, a research institute of the Italian National Research Council, specializing in the structure and functioning of ecosystems in the context of global changes and human impact. The University of Salento – DiSTeBA adds its extensive research facilities and expertise in biological and environmental sciences, while LifeWatch ERIC, a European Research Infrastructure Centre, provides a platform to enhance understanding of biodiversity and ecosystem functionality for environmental protection. The State Key Laboratory of Estuarine and Coastal Research, East China Normal University (SKLEC), contributes its valuable research streams in estuarine and coastal dynamics. With additional participation from NIOZ – Yerseke, Sun Yat-Sen University and University of Caen, this partnership forms a robust and diverse consortium aimed at addressing crucial challenges in ecosystem conservation and sustainable coastal development on a global scale. This working group also intends to serve as a platform for preparing funding proposals.
For further information, please contact Francesco Cozzoli: [email protected] or Xiaoyu Fang: [email protected].